LEFT FILTERS AND PRIME IDEALS ON TERNARYSEMIGROUPS

JAYA LALITHA.G, SARALA.Y, SRINIVASA KUMAR.B, AND MADHUSUDHANA RAO.D

ABSTRACT. In this article, we give the characterization of a left filter of ternary semigroups. We analyze some relations between the left ternary filters and prime right ideals of a ternary semigroup.

2010 Mathematics Subject Classification. Primary: 06F05; Secondary: 20N99.

KEYWORDS AND PHRASES. Ternary semigroup, Ternary filter, Left(Right, Lateral)ideals, Prime ideals.

1. Introduction

Kehayopulu [2] gave the characterization of the filter of semigroups interms of the prime ideals. S.K.Lee and S.S.Lee [4] introduced the notion of a left filters on partially ordered semigroups and gave a characterization of the left filters of T interms of prime ideals. Kostaq.H [3] characterized filters in ordered Γ -semigroups. In this paper, we analyze some relations between the left ternary filters and prime right ideals of a ternary semigroup.

2. Main result

Definition 2.1. ⁵ Let T be a ternary semigroup. A nonempty subset A of T is known as

- (i) a lateral ideal of T if $TAT \subseteq A$.
- (ii) a right ideal of T if $ATT \subseteq A$.
- (iii) a left ideal of T if $TTA \subseteq A$.

A is known as an ideal of T if it is a lateral, right and left ideal of T.

Definition 2.2. ⁵ A subset S of T is known as a prime if $ABC \subseteq S \Rightarrow A \subseteq S$ or $B \subseteq S$ or $C \subseteq S$ for subsets A, B, C of T.

- S is said to be a prime right ideal if S is prime as a right ideal.
- S is said to be a prime left ideal if S is prime as a left ideal.
- S is said to be a prime lateral ideal if S is prime as a lateral ideal.
- S is said to be a prime ideal if S is prime as an ideal.

Definition 2.3. A subsemigroup F of a ternary semigroup T is known as

- (i) left filter of T if $abc \in F$ for $a, b, c \in T \Rightarrow a \in F$.
- (ii) Right filter of T if $bca \in F$ for $a, b, c \in T \Rightarrow a \in F$.
- (iii) Lateral filter of T if $bac \in F$ for $a, b, c \in T \Rightarrow a \in F$.

A sub ternary semigroup F of T is known as a filter of T if F is a left, right and lateral filter.

In this paper, we give the characterization of a left filter of T in terms of the right prime ideals.

Theorem 2.4. Let T be a ternary semigroup and F is a nonempty subset of T. The succeeding are equivalent:

- (1) F is a left filter of T.
- (2) $T \setminus F = \phi$ or $T \setminus F$ is a prime right ideal.

Proof. (1) \Rightarrow (2): Assume that $T \setminus F \neq \phi$. Let $x \in T \setminus F$ and $y, z \in T$. Then $xyz \in T \setminus F$. Indeed: If $xyz \notin T \setminus F$ then $xyz \in F$. Since F is a left filter, $x \in F$. It is impossible. Thus $xyz \in T \setminus F$ and so $(T \setminus F)TT \subseteq T \setminus F$. Therefore $T \setminus F$ is a right ideal.

Next we shall prove that $T \setminus F$ is prime. Let $xyz \in T \setminus F$ for $x, y, z \in T$. Suppose that $x \notin T \setminus F$; $y \notin T \setminus F$ and $z \notin T \setminus F$. Then $x \in F$; $y \in F$ and $z \in F$. Since F is a subsemigroup of T, $xyz \in F$. It is impossible. Thus $x \in T \setminus F$ or $y \in T \setminus F$ or $z \in T \setminus F$.

Hence $T \setminus F$ is prime and so $T \setminus F$ is a prime right ideal.

 $(2) \Rightarrow (1)$: If $T \setminus F = \phi$ then F = T. Thus F is a left filter of T.

Next suppose that $T \setminus F$ is a prime right ideal of T. Then F is a subsemigroup of T. Indeed: Assume that $xyz \notin F$ for $x,y,z \in F$. Then $xyz \in T \setminus F$ for $x,y,z \in F$. Since $T \setminus F$ is prime, $x,y,z \in T \setminus F$. It is impossible. Thus $xyz \in F$ and so F is a subsemigroup of T.

Let $xyz \in F$ for $x, y, z \in T$. Then $x \in F$. Indeed: If $x \notin F$, then $x \in T \setminus F$. Since $T \setminus F$ is a prime right ideal of T, $xyz \in (T \setminus F)TT \subseteq T \setminus F$. It is impossible. Thus $x \in F$. Therefore F is a left filter of T. By the similar method, we have the following theorem 2.5.

Theorem 2.5. Let T be a ternary semigroup and F is a nonempty subset of T. The succeeding are equivalent:

- (1) F is a right filter of T.
- (2) $T \setminus F = \phi$ or $T \setminus F$ is a prime left ideal.

From Theorem 2.4 and 2.5, we get the following corollary.

Corollary 2.6. Let T be a ternary semigroup and F is a nonempty subset of T. The succeeding are equivalent:

- (1) F is a filter of T.
- (2) $T \setminus F = \phi$ or $T \setminus F$ is a prime ideal of T.

Proof. (1) \Rightarrow (2): Let $T \setminus F \neq \phi$. Then $T \setminus F \neq \phi$ is a prime ideal of T. infact: Since $T \setminus F \neq \phi$, we take $a, b \in T, c \in T \setminus F$. If $abc \in F$, then since F is a filter of T, we have $a \in F$, $b \in F$ and $c \in F$. It is impossible. Thus we have $a^3 \in T \setminus F$. i.e $TT(T \setminus F) \subseteq T \setminus F$. Similarly we get $(T \setminus F)TT \subseteq T \setminus F$ and $T(T \setminus F)T \subseteq T \setminus F$. Therefore $T \setminus F$ is an ideal of T. Moreover, Let $a, b, c \in T$ and $abc \in T \setminus F$.

If $a \in F$, $b \in F$ and $c \in F$ then since F is a sub ternary semigroup of T, $abc \in F$. It is impossible. Hence we have $a \in T \setminus F$ or $b \in T \setminus F$ or $c \in T \setminus F$.

 $(2)\Rightarrow (1)$: Let $T\backslash F=\phi$. Since T=F; F is a filter of T. Suppose $T\backslash F$ is a prime ideal of T. Then F is a sub ternary semigroup of T. Infact: $a,b,c\in F$. If $abc\in T\backslash F$, since $T\backslash F$ is prime, $a\in T\backslash F$ or $b\in T\backslash F$ or $c\in T\backslash F$. It is impossible. Thus we have $abc\in F$. Let $a,b,c\in T$ and $abc\in F$. If $a\in T\backslash F$ then, since $T\backslash F$ is an ideal of T, $abc\in T\backslash F$. It is impossible. Thus we have $a\in F$, $b\in F$ and $c\in F$.

Therefore F is a filter of T.

References

- [1] Anjaneyulu.A; structure and ideal theory of semigroups, Thesis ANU (1980).
- [2] Kehayopulu.N, On filters generalized in Po-semigroups, Math. Japon, 35(1990), No-4, 789-796.
- [3] Kostaq Hila, Filters in ordered Γ-semigroups, Rocky Mountain Journal of Mathematics, 41(2011), No-1, 189-203.
- [4] Lee.S.K and Lee S.S, Left(Right) filters on po-semigroups, Kangweon-Kyungki Mathematics Journal, 8(2000), No-1, 43-45.
- [5] Sarala.Y, Anjaneyulu.A, Madhusudhanarao.D, Ideals in ternary semigroups, International e-Journal of Mathematics and Engineering, 203(2013),1950-1968.

Jaya Lalitha.G; Department of Mathematics, K.L.University, Guntur Dt., A.P., INDIA.

 $E ext{-}mail\ address: jayalalitha.yerrapothu@gmail.com}$

DR.SARALA.YELLA; M.SC,M.PHILL,PH.D; DEPARTMENT OF MATHEMATICS, NATIONAL INSTITUTE OF TECHNOLOGY, A.P., INDIA.

E-mail address: saralayella1970@gmail.com

Dr.Srinivasa Kumar.B; Department of Mathematics, K.L.University, Guntur Dt., A.P., INDIA.

Dr.Madhusudhana Rao.D; Department of Mathematics, V.S.R and N.V.R College, Guntur Dt., INDIA.